Search results for " Neutrinos"
showing 10 items of 140 documents
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and Ic…
2019
[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…
Probing neutrino magnetic moments at the Spallation Neutron Source facility
2015
24 pages.- 8 figures
LHC dijet constraints on double beta decay
2015
13 pages.- 5 figures
Theory and phenomenology of Dirac neutrinos: Symmetry breaking patterns, flavour implications and Dark Matter
2021
El Modelo Estándar (SM en ingles) de interacciones Electro-Débiles (EW en inglés) ha sido un gran éxito desde un punto de vista teórico y experimental. Si bien este éxito no se puede negar, es hora de avanzar y abordar las preguntas que el SM deja sin respuesta, como las masas de neutrinos, la naturaleza de la materia oscura, el problema de la jerarquía o el problema de violación de CP en el sector de las interacciones fuertes, entre otros. De hecho, el SM predice neutrinos sin masa. Sin embargo, los experimentos de oscilación de neutrinos, que ahora alcanzan la era de la precisión, muestran claramente que al menos dos neutrinos son masivos y arrojan luz sobre su patrón de mezcla. Sin embar…
Updated determination of the solar neutrino fluxes from solar neutrino data
2016
Journal of High Energy Physics 2016.3 (2016): 132 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)
A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope.
2011
An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained …
The next-generation liquid-scintillator neutrino observatory LENA
2012
We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA's physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the …
Searches for lepton number violation and resonances in K± → πμμ decays
2017
The NA48/2 experiment at CERN collected a large sample of charged kaon decays to final states with multiple charged particles in 2003–2004. A new upper limit on the rate of the lepton number violating decay K±→π∓μ±μ± is reported: B(K±→π∓μ±μ±)<8.6×10−11 at 90% CL. Searches for two-body resonances X in K±→πμμ decays (such as heavy neutral leptons N4 and inflatons χ ) are also presented. In the absence of signals, upper limits are set on the products of branching fractions B(K±→μ±N4)B(N4→πμ) and B(K±→π±X)B(X→μ+μ−) for ranges of assumed resonance masses and lifetimes. The limits are in the (10−11,10−9) range for resonance lifetimes below 100 ps.
Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions
2016
A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes $A=204$, 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distr…
Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube
2016
We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…